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Abstract. A phenomenological model is developed in the framework of Landau theory, in 
order to account for the structural phase transitions occurring inTMMC and TMCC. This model 
includes pseudo-spin coordinates attached to the orientation of tetramethylammonium 
groups that describe order-disorder processes, coupling terms with rotatory and translatory 
modes of the octahedra chains leading to displacive contributions and coupling terms with 
the strain components that account for the ferroelastic behaviour. Thus, the phase transitions 
between phases 1’, I, I1 and I11 are described in a satisfactory way, when compared with the 
experimental data. It is shown that the complex structure of phase IV must be seen as the 
result of a ‘lock-in’ transition from a hypothetical incommensurate phase. 

1. Introduction 

The experimental results reported in the preceding papers (I and 11) of this series [l, 21 
made it possible to interpret the mechanisms of the structural phase transitions occurring 
in the crystals of (CH3)4NMnC13 (TMMC) and (CH3)4NCdC13 (TMCC), These mechanisms 
are of complex nature, since they generally involve order-disorder processes due to 
the reorientational dynamics of the (CH3)4Nf (TMA) groups, coupled to displacive 
contributions coming from rotations or translations of the MC13 octahedra chains. In 
addition, coupling should exist between strain components and the order parameter, 
when the transitions are ferroelastic. 

In the present paper (111), which is the last one of this series, we intend to give a 
coherent description of all phase transitions in these systems, through a phenom- 
enological model developed in the framework of Landau theory. 

The first step (section 2) will consist of the determination of the general formulation 
of a thermodynamic potential able to account for the existence of the parent phase I’ 
(P63/mm~, 2 = 2) and of the subgroup related phases I (P63/m, 2 = 2), I1 (P2,/b, 
2 = 4) and I11 (P2,/m, 2 = 2); at this stage, phase IV (P2,/b,Z = 12) will be ignored. 

In section 3, the I’  c, I phase transition will be considered in detail. Then section 4 
will be devoted to the phase sequences occurring between phases I, I1 and 111. 

0953-8984/90/428243 + 16 $03.50 @ 1990 IOP Publishing Ltd 8243 
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Table 1. Symmetry properties of the order parameters in the different structural modi- 
fications I’(P63/mmc, Z = 2). I(P6,/m, Z = 2), II(PZl/b, Z = 4) and III(PZ,/m, Z = 2). 
The notations of Bradley and Cracknell[3] are used. The origin of symmetry operations is 
taken on the metallic M = Mn, Cd cation. 

Phase 
Order 
parameters I’ I I1 111 

Expressions that are able to account for the behaviour of the elastic constants and of 
soft modes will be established and compared with the experimental data. Finally, the 
particular problems associated with the occurrence of the complex phase IV will be 
discussed in section 5 .  

2. General formulation of the free energy 

As established in paper I1 [2], three different order parameters, let us say p ,  q and E ,  
are necessary to describe the sequences of transitions occurring between phases I f ,  I, I1 
and 111. Table 1 summarizes the symmetry properties [3] of these order parameters in 
the different structural modifications; p is one-dimensional, (r: /A2g), q is two-dimen- 
sional since it belongs to the doubly degenerate Ts+/E2g representation, and E is three- 
dimensional since there are three arms in the star of the wavevector at point M (0 10) 

Then, from classical group-theoretical procedure, the Landau free energy of the 
[31. 

system can be developed up to the fourth order as a function of p ,  q and E as follows: 

A @ @ ,  7 , E )  = i A , p 2  + aClp4 + 4A2q2 - 3B2q3 + iC2q4 + 4A2E2 + +C,E4 

- QDpq3 + $Ep2q2 + Fg2q  + 4GE2q2 + BHp2E2 + . . .. (1) 
This is a ‘reduced’ formulation, which does not explicitly take into account the different 
components of q ( q , ,  q 2 )  and 5 (E1, E 2 ,  E l ) .  For instance, the third-order invariant of q 
appears because [I-,+ /E2,I3 = A,, + AZg + E , leading to an invariant (Alg) of the form 
[4] q: - 3q!q2 - 3q1q32 + q: ,  denoted by q3 in ‘reduced’ form, etc. All coupling terms 
between p ,  q ,  g up to the fourth order have been included. 

The different phases observed with TMMC and TMCC correspond to solutions such as 

29 

PI : 
(i) p = 0 q = o  E = O  phase I‘ 

(ii) p # 0 q = o  g = 0  phase I 

(iii) p # 0 l l + o  g = 0  phase I11 

(iv) p # O  l l # O  g # o  phase 11. 
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3. The transition I' ++ I 

This is, of course, the simplest case, since it concerns only the one-dimensional order 
parameter p .  As shown in paper I1 [ 2 ] ,  the I' ++ I phase transition involves a displacive 
mechanism due to octahedra chain rotation coupled to order-disorder processes of the 
TMA. Thus, the order parameter p is a linear combination of a pseudo-spin coordinate 
(attached to the TMA reorientations) and of the chain rotation coordinate with the same 
symmetry. So, a pseudo-spin phonon coupling formalism is certainly the best way to 
describe the phase transition mechanism. Unfortunately, we have no information on 
the pseudo-spin dynamics (collective excitation). All we know is that the characteristic 
frequency for individual TMA reorientations lies in the range 10" to 0.5 X lo ' ,  s-l [ 5 ] ,  
which is significantly lower than the frequency of the chain rotatory mode, observed 
around (2  to 3) x lo1, s - l .  Also, it should be noticed that this latter frequency is far from 
being zero at the transition temperature, and that its softening observed in phase I is 
rather small (see figure 4 in paper I1 [2]) .  

After these remarks, we shall use an oversimplified procedure in which the pseudo- 
spin coordinate is considered as the primary order parameter, the chain rotatory mode 
being treated separately according to a harmonic potential slightly perturbed by anhar- 
monic coupling terms with the pseudo-spin coordinate. This means that the pseudo-spin 
frequency is supposed to be always much lower than the chain rotation frequency. 
Hence, we define p as a linear combination of the two AZg pseudo-spin coordinates 
derived from model (1) and ( 2 )  [ 1 , 2 ] :  

ok';; = i(el + e, - e; - e;) 
= ( l / d 6 ) ( e 3  + e, + 6, - 6; - 6; - 8;). 

A2g 

In order to account for the behaviour of the elastic constants, the elastic energy is 
introduced in the Landau free-energy expansion, together with the coupling terms 
between the strain components and the order parameter. So, the effective free energy 
is developed as 

A@ = A@@) + A@(e) + A@(p, e )  (3) 

(4) 

( 5 )  

(6) 

where 

A@(p) = i a ( T  - T I ) p 2  + $Cp4 + . . . 
A@(e) = 4Cyl(e: + e i )  + iC&e$ + 4C:,(e; + e:) 

+ 2C&e; + Cy2eleZ + Cy3(e, + e2)e3 

~ @ ( p ,  e )  =f(el + e2)p2 + ge3p2 + . . . . 
In expression (4), T I  is the actual temperature for the second order I' c, I transformation. 
The ei appearing in relation (5) are the strain tensor components and the C i  are the 
'bare' elastic constants, adapted to the hexagonal symmetry of the system [ 2 , 6 ] ;  note 
that C& = 4(C& - Cy,). 

The minimisation equations of A@ with respect to ei ( i  = 1 to 6 )  lead to the relations 

el = e 2  = (gc73 -fc!3>/[(C?1 - - 2c?:1p2 (7) 

e3 = [2fc?3 - d C y l  + c & > l / [ ( c ? l  - cy2>c!3 - 2c?:1 p2 (8) 
e4 = e5 = e6 = 0. (9) 
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By putting (7), (8) and (9) back into ( 3 )  one obtains 

A@[p,e(p)] = la(T - T I ) p 2  + b(C + C’)p4 (10) 
where 

C’ = -[4fzC23 + 2g2(Cy1 + Cy*) - 8fgCy,]/[(Cy1 + Cy,)C& - 2C$i] 

so that the equilibrium value of the order parameter is given by 

p = o  inphaseI ’ (T> TI) (11) 
p2 = a(T1 - T ) / ( C  + C ’ )  in phase I ( T  < TI). 

From relations (2) and ( l l ) ,  it follows that the orientational disorder of the TMA at a 
finite temperature T < T ,  is described by 

(12) e, = e, > e; = e; 
e, = e, = e, > e; = e: = e; 

with 

2 (8, + m = p ,  

c ( e , + e : ) = p ,  

r = 1 . 2  

1 = 3 . 4 . 5  

p1 andp2 being the relative weights of model (1) and model (2), respectively (pl + pz = 
1) [l, 21. Then, the phase I ground state, obtained when T+ 0, corresponds to e,’ + 0 
(i = 1 to 5 ) ,  i.e. 

(13) e, = e, = &PI 
- - - e 3 = 0 4 = e  -1 5 - 3 P 2 .  

This is actually the approximation adopted for the structure determination of TMMC in 
phase I [ 11. 

The adiabatic elastic constants are now given by the general relation [7] 

C, = Cfj - (a2A@/de,ap)X~(d2A@/apae,)  (14) 
where Cfj are the elastic constants determined at constant order parameter ( p )  and 
is the susceptibility of the order parameter determined at constant strain. In phase 1‘, 
from (14) one finds for all elastic constants 

c, = CO, (15) 
and in phase I 

c1, = c22 = cy, - 2f2/C = cy, 
c3, = c23 - 2 g y c  = c23 

c12 = cy2 - 2 p / c  = c y 2  

c13 = cy, - 2fg/C = c;, 
and 
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The step-like variation of Cll observed at T I  (see figure 8 in paper I1 [2]; see also 
[8,9]) is in agreement with relations (15) and (16). There is, however, an additional 
quasi-linear variation with temperature, due to the thermal expansion of the crystal. As 
for C33 [8,9], the anomaly predicted at TI by relations (15) and (17) is much less 
pronounced than for C, 1, and this can be explained with the present model. As a matter 
of fact, the order parameter corresponds to TMA reorientations around the c axis. These 
motions can induce some deformation in the hexagonal plane (e, ,  e2),  but not in the 
direction parallel to c ( e 3 )  since they have no component along c .  Because of this 
anisotropy, it can be stated that the coupling coefficients are very different (g < f ) ,  which 
can explain the experimental results. 

Let us now write the chain rotatory mode potential as 

(D(R,p) = & M w i R 2  + hRp + i kR2p2 .  (21) 
R represents the mean value of the chain rotation coordinate; wE is the harmonic 
frequency and M is the reduced mass of the oscillator. The bilinear coupling term 
hRp leads to a proportionality relation between R and the order parameter p ,  and so 
introduces a displacive contribution coming from chain rotation. This term also leads to 
a renormalisation of the transition temperature T I ,  which can be neglected as long as 
M u ;  A ,  = a(T - TI)  (this is the basic assumption of our approximate treatment). 
Then, thefrequencyof thechainrotatorymodeisobtainedfrom ~6 i.e. thesusceptibility 
determined at constant order parameter, which gives 

T >  T I  = w$ 
T <  TI wi = w$ + ka(TI - T)/MC’ 

The relations (22) account for the non-zero value of the soft-mode frequency at T I  
and predict a linear variation with temperature of wi below T I  (see figure 4 in paper 
I1 [2]). This linear variation is approximately verified in phase I ,  the saturation effect 
observed well below T I  probably being related to the influence of sixth-order terms, 
which have been neglected in (3). 

4. The I - I1 and I t) I11 phase transitions 

The free-energy expansion (1) is unworkable, in practice, for the description of phases 
I1 and 111 where the equilibrium values of E and/or q are non-zero. So, we have simplified 
the problem by considering that the I’ - I phase transition is disconnected from the 

Figure 1. The phase diagram corresponding to the 
potential (23), with B ;  > 0, C2 > 0, C3 > 0, F < 0 
and G > 0 (from [lo]): - . first-order tran- 
sition lines; - - - -, second-order transition lines. 



8248 M N Braud et a1 

other, since it occurs at a much higher temperature. Then, the equilibrium value of the 
order parameter p will be almost saturated in the temperature range of the I f) I1 and 
I ++ I11 transitions. I n  other words, we shall consider the phase I ground state. Hence, 
the effective free energy is obtained by putting p = po = constant in (l), which gives 

The minimisation equations can now be written as 

The stability conditions of a potential of this form have already been studied by Gufan 
and Torgashev [lo]; figure 1 shows the corresponding phase diagram, as established by 
these authors from numerical simulations. It is worth noting that all transitions occurring 
around the triple point P3 between phases I, I1 and I11 are of first order, as observed 
experimentally [2]. I n  the ‘trigger’case [ 2 ] ,  i.e. when A; = f (  T )  and A ;  = constant, the 
I I1 transition is necessarily of first order, which is indeed verified in TMMC. Further- 
more, because of the q3 term, the I - I11 transition is always of first order, as observed 
in both TMMC and TMCC. It should be noticed that the potential (23) produces a ‘re- 
entrant’ phase I11 (figure 1). However, this ‘re-entrant’ character disappears when 
neglecting the biquadratic coupling term $Gq2E2 [ll]. I n  fact, it has been found experi- 
mentally that phase I1 is ‘re-entrant’ and not phase I11 (see figure 1 in [l] or [2]), and 
clearly the potential (23) is not able to account for this observation. It should be recalled 
that, at this stage of the discussion, we are still ignoring the existence of phase I V ,  and 
of course this simplification prevents any realistic description of the observed phase 
diagram. 

4.1. The pure order-disorder model 

Starting from the phase I ground state, as described by the relations (13), it has been 
shown in paper I1 [2] of this series that the driving order parameter for both the I t) I1 
and I f) I11 phase transitions are the two pseudo-spin coordinates with EZg symmetry, 
issued from the model (2): 

These coordinates account for ordering processes of the TMA in phases I1 and 111, the 
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additional unit-cell doubling occurring in phase I1 being explained by a trigger-type 
mechanism [2] (see section 4.2). 

Thus, it is meaningful, as a first step, to discuss the implications of such an order- 
di5order model. At this point, phases I1 and I11 (ordered phases) will not be distin- 
guished. The representations r: , l?l/E2g (tabie 1) are complex conjugate, so that the 
two components q1 and q 2  of the order parameter q are such as q = q ; .  Then we have 

According to classical group-theoretical procedure, the free energy expanded as a 
function of q l  and q 2  [12, 131 is 

A@.(q) = a(T)rl172 + P(v: + 11:) + i” - 11:) + m:v; + * ’ * 

a ( T )  = aO(T - To) 

(26) 
where 

r .  q 2  = e-“ q l  = eipq 
Minimising AO( q )  with respect to Q, leads to the relation 

t an3q  = -p ’ /p  (27) 

T ,  = To + (p2 + p I 2 ) / a 0 y .  (28) 

q ( T )  = (3qc/4)[1 + (1 - 8 ( T -  To>/(Tc - T0))l’21 (29) 

T c  = - M Y  cos 3v) .  (30) 

and the first-order transition to the ordered phase occurs at a temperature T, such that 

In the ordered phase ( T  < T,) ,  the equilibrium value of the order parameter is 

where q c  is the jump of q at T,  given by 

Thus, from the relations (25), (26) and (29), the orientational disorder of the TMA at 
a finite temperature T < T,  is described by 

8 3  > e, > e, 

el = e2 with e, + e, = p 1  

with e, + e, + e, = p , .  

On the other hand, one always has 
- - 

since the order parameter 7 does not contain any pseudo-spin coordinate issued from 
model (1) [2]. Such a complex situation has been encountered in the structure deter- 
mination of TMMC (phase II), just below T, [ 11. 

Now, in both phases I1 and 111, we are looking for a completely ordered state of the 
TMA at T = 0, corresponding to p1 = 0 and 8, = p 2  = 1. Obviously, this cannot be 
achieved with the help of the EZg order parameter (25), which belongs to model (2) only. 
So, one has to consider an additional coordinate: 

@ A g  = (1/d30)[-3(81 + e,) + 2(83 + 6 4  + e,)] (31) 

in order to account for the conversion of the TMA from the model (1) orientations (e,, 
6,) into those of model (2) (e3, e,, e,). This coordinate (31) is totally symmetric in both 
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the disordered and ordered phases, and so has non-zero spontaneous values on both 
sides of the transition. As aconsequence, it cannot be treated as a usual order parameter. 
Nevertheless, OA (31) is able to account for the complete conversion to model (2) (pl = 
0, p 2  = 1) at T = 0, owing to thermally activated processes expected between ener- 
getically inequivalent orientations, as determined in phase I (6, = 6,  # 6,  = 6, = 6, 
from the symmetry properties of the crystal. 

Additional information on the dynamics of the TMA reorientation through the phase 
transition is necessary to test the validity of such a complex model, based on structural 
data [l]. 

g 

4.2.  Complete development of the free energy 

In order to account for the behaviour of the elastic constants, on the one hand, and for 
the unit-cell doubling occurring in phase 11, on the other hand, one has to introduce in 
(26) the elastic energy, the order parameter 5 and the coupling terms between these 
quantities and the order parameter 11. The complete form of the free energy becomes 

where 

AQ(11) = (Ul(73111112 + sl(11: + 11:) + i s m  - 11:) + Yl11:T: + .  . * (33) 

+ iC&ei + Cy2ele2 + C?3(ei + e2)es (34) 

+ d2e3111112 + . * *  (35) 

(36) 

(37) 

A@(e) = aCy,(e: + e;) + iC&e$ + IC&(e$ + e : )  

A@(11,e) = (a1111 + a2112Xe1 - e21 + (bl11l + b2112)e, + dl(el + e21111112 

= m2(5: + 51 +a)+ Y2(5?  + E;  + 5 9  + s2(5:5: + 5: + E :  + E 1  + 5 3  + * ‘ . 

A@ (7, 5) = 1 (5: - ijj e - in/3 - 3 e in/3 ) 11 + i2 (5 ;  - 5; e in/3 - E :  e -in/3) 11 + . . . . 

The C! appearing in (34) are the renormalized ‘bare’ elastic constants of phase I given 
by the relations (16) to (19). For the sake of simplification, coupling terms of the form 
v2e2 have been neglected in (35) as well as coupling terms of the form q2E2 in (37). E l  , 
E2 and 5, are the three components of the order parameter 5,  corresponding respectively 
to the three arms of the wavevector at point M (0 i 0) (table 1). Note that phase I1 
corresponds to solutions such that [4] 

51 f O  with 5 2  = E 3  = 0 (38) 
since only one point M is replaced at the zone centre in this phase. Because the 
r l ,  Tsf/E,, representations are complex conjugate, the coefficients introduced in AQ 
are such that 

a lb2  + a2b,  = 0 
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Finally, because of the 'trigger' character of the I - I1 transition, as evidenced from 
ultrasonic measurements with TMMC [2], we put 

L Y ~ ( T )  = a ? ( T  - TO) 
(41) a2 = constant. 

Note also that one always has [6] 
CO 66 - 1  - *(Cy1 - C y 2 )  = &(cy1 - cy2). 

Then, minimizing A@ (32) with respect to the e, leads to the relations 

and 

The expression (46) is indeed of the same form as (23) except for the biquadratic coupling 
term q2g2, which has been neglected. 

At this point, it is worth noting that Levola and Kleemann [13] and then Levola and 
Laiho [8] have already worked up a free-energy expansion such as 

AO(q,e) = AQ(q)(33) + AQ(e)(34) + AO(q,e)(35) 

and they have used this thermodynamic potential for the description of the 1-11 
transition of TMMC. By no means is this potential able to account for a multiplication of 
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the unit-cell volume [ l ] ,  since the order parameter q is at zone centre. In addition, the 
expression of T I  given by these authors [ 131 

T1 = To - 5a2/4a:C& 

is incorrect; as will appear clearly in the following, T 1  cannot be lower than T o .  

discuss the behaviour of the parameters of interest in this study. 
Now, from the preceding development, expressions can be easily established to 

4.2.1. Phase I (q = 0, f = 0). Expressions for the elastic constants are established from 
the general relation [7]: 

Figure 2 shows the best fit for the temperature dependence of c66 in phase I of 
TMMC [2] ,  obtained from (50).  The agreement is quite satisfactory with the following 
values of the parameters: 

Cg6 = 8.18 X lo9 NIT-' 

2a2/ay = 2.03 x 1 O I 2  KNm- '  

TO = -175 K. 
(53) 

It follows that c 6 6  diverges at T o ;  meanwhile, it extrapolates to zero at T1 = 74 K, which 
is much lower than the actual transition temperature TII = 126 K, as expected for a first- 
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Figure 3. The temperature dependence of CI1 in 
TMMC. Circles are experimental points from [2], 
and the full curve is the best fit from relations (15), 
(16) and (47). The broken line corresponds to 
the equation Cy, = (30.493 - 0.01533 T )  x 
lo9 N m-2 adjusted to account for the influence 
of thermal expansion. 

order ‘pseudo-proper’ ferroelastic transition. The difference 

T, - To = 2a2/a7C& 

characterizes the strength of ferroelastic coupling. In the case of TMMC, this coupling is 
extremely strong ( T ,  - To = 249 K). For a comparison, note that the corresponding 
T ,  - To values observed in the displacive ‘pseudo-proper’ ferroelastic Na5A13F14 [ 141, 
LaP,014[15] and BiV04[16] are respectively 27, 160 and 230K. In the case of 
ammonium oxalate (order-disorder transition), T ,  - To equals 143 K [17,18]. 

The best fit for the temperature dependence of C1 [2] is shown in figure 3; according 
to (47) and (50),  the same parameters as those found for (53) have been taken. Also, 
the step-like variation of C1 at TI, according to (15) and (16) , is introduced in the fitting 
procedure. Finally, a linear variation of Cy, with temperature has been adjusted, in 
order to account for anharmonic effects due to thermal expansion. The agreement is 
again satisfactory (figure 3). There is however an additional temperature dependence 
of C1, just below TI, probably coming from coupling terms of the form e2p* (see for 
instance [14]), which have been neglected in (3). 

Except for a quasi-linear variation with temperature due to thermal expansion, C33 
remains essentially constant in phase I [8,9], as expected from (48). 

4.2.2. Phase 111 (q # 0,E = 0). As shown in section 4.1,  the temperature value for the 
first-order I t) I11 transition is given by 

TI11 = TI + (P? + P ; ’ ) / f f 7 Y ; *  (54) 
This gives the equation of the I * I11 transition line in figure 1. The equilibrium value 
of the order parameter is 

TI11 = (3%/4)[1 + (1 - i ( T -  Tl)/(TIII - T1)1’21 

T c  = - P , A Y i  cos 3v) .  

(55) 

(56) 

where 



8254 M N Braud et a1 

Again, expressions for the elastic constants in phase I11 can be easily established, 
but unfortunately there are no available experimental data [9] to compare with. 

4.2.3. Phase ZZ ( q  # 0, El # 0, E 2  = E3 = 0). The minimization equation aA@/dE,  = 0 
gives the relation between q and E l  as 

E: = [-a2 - 2lCOS(p,  + w)q]/2y2 (57) 
so that the condition E ?  > 0 (with y 2  > 0) yields the two conditions 

q > -a2 / [21  cos(p, + U ) ]  > 0 

q < -a2 / [21  cos(q + o)] < 0 

owing to the two different types of equivalent domains determined from the sign of the 
coefficient p,/cos 3 q .  In particular, in the case ( q  > 0) where 

q c  = -pl / (y;  cos 3 q )  > -a2/[21 cos(p, + w ) ]  > 0 (59)  
phase I11 will never be stable and the direct transition I - 11, of the ‘trigger’ type, will 
occur. This is actually our interpretation of the zero-pressure I - 11 transition of TMMC 
at TII = 126 K. The value of q c  = -a2/[21 cos(p, + o)] determines the coordinates of 
the triple point P3 (figure 1) .  Thus, the change from 1-11 to 1-111 transition as 
observed with TMMC at high pressure (see figure 1 in paper I1 [ 2 ] )  can be accounted for 
by a pressure dependence of the coefficients, that makes the ‘trigger’ condition (59)  not 
valid beyond P3.  

By putting (57) back into (46) ,  the effective free energy for phase I1 is rewritten as 

A W L  e(r7)&(11>1 = - a : / 4 ~ 2  - W c o s ( p ,  + W ) / Y ~ ) T ]  

+ [a? ( T  - T, )  - k o s (  p, + o ) / y 2 ] q 2  

+ 2 ( p ,  cos 391 - p ;  sin 3p,)q3 + y ;  q 4  

and the minimization equation is 

- a21 cos(q + w)/y2 + 2[aY(T  - TI)  - l2  cos(p, + o ) / y 2 ] q  

+ 6(p1 cos 3 q  - sin 3 q ) q 2  + 4 y ; q 3  = 0. (61)  

Then, the solution (qI I )  of (61) minimizing (60) does not have a simple algebraic form. 
In order to discuss more easily the temperature dependence of qI I ,  it can be shown [ 191 
that an upper limit of qI I  is obtained by neglecting the constant term -a21 cos(p, + w ) /  
y2 in (61 ) ,  which gives 

T - T1 1 2 y ;   COS^(^, + U )  cos2 3p, 
P:Y2 

+ 

On the other hand, a lower limit of qII  is given by qIII  (55).  Thus, we have 

7 ;  > TI1 > 11111. (63)  
In the ‘trigger’ case, the 1-11 transition occurs at a temperature TI, > TI[, 

(figure 1). Also, an upper limit of TII is obtained from VI:, i.e. 

TA = TIII + l 2  cos2(p, + w ) / a ~ y 2  (64) 
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so that 

In the limiting case where a, = 0, one has qII = q &  and consequently TII = TA;  this 
determines the coordinates of the tricritical point PI (figure 1). 

From (a, b)  birefringence measurements, Levola and Kleemann [13] have been able 
to determine the temperature dependence of qI I ,  through the I e I1 transition of TMMC. 
The data can be well reproduced with the help of relation (55) [13]. However, the value 
of T1 determined with such a procedure ( T ,  = 119.8 K) is considerably higher than ours 
( T ,  = 74 K) determined rigorously from the temperature dependence of C66 in phase I 
(figure 2). As pointed out just above, relations such as (55) or (62) are approximate. In 
fact, if such laws in T112 are able to reproduce the temperature dependence of qII  [19], 
the physical meaning of the coefficients deduced from these expressions are not so 
simple. 

Now it is not meaningful to give here the expressions established for the elastic 
constants in phase 11, though some of these have been measured [8]. As a matter of fact, 
these relations are not of practical use because of their complexity. 

Finally, it has been established that the order parameter f contains the chain trans- 
lation coordinate TA(M) and the pseudo-spin coordinate O& issued from model (1) [2]. 
Again, a pseudo-spin-phonon coupling formalism is probably the most appropriate to 
describe the resulting excitations [20]. Nevertheless, in the rough approximation where 
@pi is neglected, the frequency of the TA(M) mode with A, symmetry in phase I1 is 
obtained directly from x e ( f l ) ,  i.e. 

Moa, = -4a2 - 8lcos(cp + w)qII .  (66) 

Qualitatively, the experimental results (see figure 7 in paper I1 [2]) agree with relation 
(66), as long as the temperature dependence of qII  can be approximated by a law in 
T1I2 [8]. 

5. Phase IV 

Phase IV is characterized by a doubling of the hexagonal unit cell along b and a trebling 
of the lattice period along c (see paper I [ l] .  Thus, phase IV results from an additional 
lattice instability occurring at point U (0 2 a), situated at the surface of the hexagonal 
Brillouin zone [3]. The trebling along c is obtained for the particular value a = 4. 

The two representations of the wavevector at point U,  denoted as U1/A and U,/ 
B [3], are of dimension 6, owing to the six arms in the star of this wavevector. It can be 
shown [21] that both representations U1/A and U2/B can induce the phase IV space 
group PZl/b(Z = 12) [ l ] ,  when a = i. Let us call E’ the order parameter for phase IV 
that belongs either to U1 /A or U,/B; the six components E \ ,  E ; ,  . . . , f k  are such that 

EIS = f;,* (67) 

(68) 

Ei = E;* f ;  = 

E ;  = *E; # O  

and phase IV (a = 4) corresponds to solutions [21] such as 

E ;  = = f ;  = f ; ,  = 0. 
It is important to notice that the antisymmetric squares {U,/A}2 = {U,/B}’ contain 

the vector component representation r ; /Au(z)  of the P63/m space group [21], which 
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determines the presence of a Lifschitz invariant in the free-energy expansion. Thus, the 
thermodynamic potential including the coupling terms between 5’ and the primary order 
parameter q is of the form 

A W E ’ )  = if(.) d z  (69) 

with 

f(z) = 4 ( 5 ; 5 ;  + 5;5i + 5;5;1 + r;(G2G2 + G2G2 + 5;*5i2) 

and 

A@(q,E’) = / ; ( { ; E ;  - e-in/3 - g ; E ;  einI3)q1 

) r / 2  + . . * .  (71) + /; ( 5 ;  5; - 5; 5: ein/3 - 5; 5; e-ini3 

Now, it is not an easy task to discuss the stability conditions of a potential including 
three coupled order parameters, such as given by adding (69) and (71) to (32), even 
when limiting the problem to solutions corresponding to (38) and (68). However, it is 
yet possibe to take out some general ideas. 

The Lifschitz invariant 5; dE,!/dz - E,! dg;/dz in (70) is able to stabilise an 
incommensurate phase with a modulation vector along c* , whereas the terms 
( 8 5 ;  /dz)(aE: / 8 z )  stabilise a commensurate phase resulting from a ‘lock-in’ transition 
where this modulation vector takes on a rational value [22]. So, phase IV must be seen 
as the result of a ‘lock-in’ transition from a hypothetical incommensurate phase, at the 
particular value LY = 4. Note that the existence of an incommensurate phase is not a 
necessary condition, since the direct transition (of first order) from a normal phase (I, 
I1 or 111) to the commensurate phase IV is also possible. 

It should also be pointed out that the expressions (69) and (71) are reduced to the 
forms of (36) and (37), respectively, if the ‘lock-in’ occurred at a = 0 (point M (0 i 0)). 
Thus, phase 11, as well, could be seen as the result of a ‘lock-in’ transition. If such were 
the case, one has just to replace (36) and (37) by (69) and (71), respectively, in (32), so 
as to account for all transitions occurring between phases I, 11, I11 and IV. 

Additional information concerning the structure of phase IV can be obtained from 
group-theoretical considerations. In the case where phase IV is induced by the U1/A 
representation, the atomic displacements responsible for the modulation (amplitudon) 
are longitudinal, i.e. they are polarised along c.  Then, the resulting structure for the 
octahedra chains in phase IV would correspond to ‘accordion’-like distortions. In the 
case where phase IV is induced by U2/B, the atomic displacements are transverse, 
resulting in ‘undulation’-like distortions of the octrahedra chains. In fact, x-ray diffuse 
scattering experiments performed in phase I with TMMC and TMCC (see paper I [l]) have 
been interpreted in terms of ‘accordion’ motions of the chains, which could resemble in 
a short range the structure of phase IV if induced by U1/A.  Finally, the pseudo-spin 
coordinates issued from the model (2) are well suited to account for the trebling of the 
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unit cell alongc, since TMAcan adopt alternately one out of the three possible orientations 
provided by this model. 

6. Conclusions 

The structural phase transitions occurring in the chain compounds TMMC and TMCC 
have been studied in detail by means of different and complementary techniques. The 
mechanisms for the phase transitions in these materials are very complex, since in most 
cases they involve order-disorder processes due to reorientations of the TMA groups, 
coupled with displacive contributions coming from octahedra chain rotation or trans- 
lation. In spite of this complexity, a rational description of the transition mechanisms 
has been made possible, using phenomenological models developed in the framework 
of Landau theory. 

As far as the order-disorder processes of the TMA are concerned, we have adopted 
aFrenkel-type description, in which the TMA can perform jump motions between discrete 
orientations. This results in the definition of pseudo-spin coordinates. We have stressed 
the importance of model (2) corresponding in phase I to three energetically orientations 
in the mirror plane perpendicular to the sixfold screw axis. Indeed, this model provides 
the primary order parameter for both the I * I1 and I * 111 phase transitions. However, 
according to structural data, a model (1) is also present, corresponding to two mirror- 
related orientations of the TMA. Then, the ordering processes are already of a complex 
nature, due to the necessary conversion of the TMA form model (1) orientations to those 
of model (2) at low temperature, which is probably achieved by means of thermally 
activated processes (the two models are mutually exclusive by symmetry). 

In order to account for the displacive mechanisms, coupling between the pseudo- 
spin coordinates (primary order parameters) and atomic displacements in the octahedra 
chains (rotatory and translatory modes) has been introduced in the free-energy expan- 
sion. Moreover, due to the ferroelastic behaviour of these materials, the elastic energy 
and coupling terms of the order parameters with the strain components are also intro- 
duced. All together, this results in a complex formulation of the Landau free energy, 
including three coupled order parameters, so as to account for the existence of the parent 
phase I’ and of phases I, I1 and 111. The problem has been solved by assuming that the 
I’ c) I transition occurring at high temperature is disconnected from the other. Then 
expressions are derived for the temperature dependence of elastic constants and soft- 
mode frequencies that qualitatively fit the experimental data. In particular, both tran- 
sitions I c) I1 and I c) I11 are ‘pseudo-proper’ ferroelastic, driven by a pseudo-spin 
coordinate (order-disorder process), phase I1 being stabilised by an additional displacive 
contribution, of ‘trigger’ type. 

Finally, it is shown that the complex structure of phase IV must be seen as the result 
of a ‘lock-in’ transition from a hypothetical incommensurate phase. The existence (or 
non-existence) of an incommensurate phase in TMMC and/or TMCC is an important 
question still open to discussion. 
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